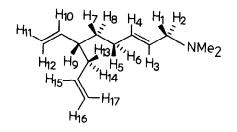
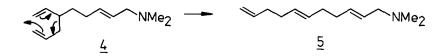

REACTION OF TERTIARY ALLYLIC AMINES WITH BUTADIENE CATALYZED BY PALLADIUM Christina Moberg Department of Organic Chemistry Royal Institute of Technology S-100 44 Stockholm, Sweden

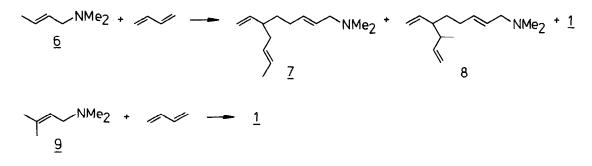
Summary: Tertiary allylic amines react with butadiene in the presence of palladium(0) with cleavage of the carbon-nitrogen bond of the allylic amine and formation of the unsaturated tertiary amine 4.


In the course of our studies of nickel-catalyzed additions of secondary amines to butadiene,² we found that, in addition to the main products <u>1</u> and <u>2</u>, small amounts of co-oligomers consisting of one amine and four butadiene units are formed when the reaction mixtures are allowed to stand for several daws with an excess of butadiene. By using a palladium(0)-catalyst the yield and the selectivity of this co-oligomerization reaction can be improved. Furthermore, the same products are obtained from butadiene and pre-formed octadienylamine <u>1</u>.

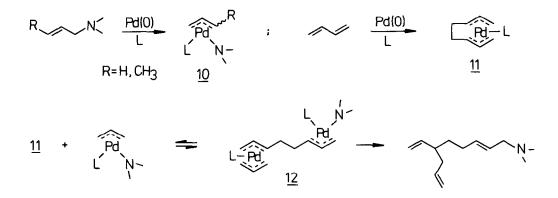
This prompted us to study the palladium(0)-catalyzed reaction of butadiene with other simpler allylic amines. Reaction of N,N-dimethylallylamine ($\underline{3}$) (5 mmol) with butadiene (20 mmol) in the presence of bis(triphenylphosphine)palladium(II) chloride (0.1 mmol) and triethylaluminium (0.5 mmol) in toluene (2 ml) gives an unexpected product, N,N-dimethyl-N-6-vinyl-2,S-nonadienyl-amine ($\underline{4}$), along with ca 5% of compound $\underline{1}$. The optimum yield (81% as determined by CLC with dodecane as an internal standard) is obtained after 20 h at 20° followed by 3 h at 60°. Compound $\underline{4}$, as a 93/7 mixture of the *trans* and *cis* isomers, was purified by preparative gas chromatography using a 19 mm x 3 m column of 20% Apiezon L + 10% KOH on Chromosorb W-AW. Higher oligomers, of unknown structure, are formed using a large excess of butadiene and prolonged reactions times (GC-MS evidence).


The structure of compound $\underline{4}^3$ was established by NMR spectroscopy. The following data were obtained:

¹H-NMR (CDCl₃)⁴: δ 1.2-1.6 (H₇ and H₈, m), 1.9-2.2 (H₅, H₆, H₉, H₁₃ and H₁₄, m), 2.20 (6H, s), 2.84 (H₁ and H₂, d, J_{1,3} = J_{2,3} = 5.37 Hz), 4.9-5.1 (H₁₁, H₁₂, H₁₆ and H₁₇, m), 5.47 and 5.56 (H₄ and H₃ respectively, AB-part of an ABM₂X₂-spectrum with J_{3,4} = 15.4, J_{4,5} = J_{4,6} = 5.5 Hz), 5.6 (H₁₀,m) and 5.76 (H₁₅, ddt, J_{13,15} =J_{14,15} = 7.0, J_{15,16} = 11.0 and J_{15,17} = 16.4 Hz). Irradiation of the allylic protons gave rise to an AB-spectrum for H₇ and H₈ with δ 1.32 and 1.48 and J_{7,8} = 13 Hz. A singlet at δ 2.22 and a doublet at δ 2.91 probably originate from the *cis* isomer of 3.


¹³C-NMR (CDCl₃)⁴: 29.8(t), 33.8(t), 39.4(t), 43.1(d), 45.1(q), 62.0(t), 114.5(t), 115.7(t), 127.4 (d), 133.8(d), 136.9(d) and 142.3(d) (the multiplicities were determined by off-resonance decoupling).

Further evidence for the structure of compound $\underline{4}$ follows from its tendency to undergo a Cope-rearrangement to give the isomer 5 (80% after 1 h at 250°C in a sealed tube).



The choice of catalyst is important. Use of tetrakis(triphenylphosphine)palladium(0) in place of the *in situ*-formed palladium(0) gives only 5% of compound <u>4</u> along with 15% of compound <u>1</u>. The presence of a Lewis acid has been shown to be beneficial for both nickel- and palladium-catalyzed reactions of dienes with nucleophiles.^{1,6} Indeed, the addition of triethylaluminium results in formation of compound <u>4</u> (50%) together with compound <u>1</u> (15%), whereas addition of boron trifluoride etherate gives only compound <u>1</u> (40%). Use of sodium borohydride in place of triethylaluminium as a reducing agent similarly affords only the octadienylamine (70%).

In the palladium-catalyzed reaction of butadiene with N,N-dimethylcrotylamine ($\underline{6}$) approximately equal amounts of the two isomers $\underline{7}$ and $\underline{8}$ are formed in a total yield of about 30%. The main product is, however, the octadienylamine $\underline{1}$. Reaction of butadiene with the allylic amine $\underline{9}$ results in exclusive formation of compound $\underline{1}$ (52%).

It has previously been reported^{7,8} that allylamine is disproportionated by palladium(0) to give di- and triallylamine and ammonia. These reactions and the reaction reported here probably involve the oxidative addition of the allylamines to palladium with formation of <u>10</u>. It is well established that butadiene reacts with palladium(0) in the presence of various ligands to give the bis- π -allyl complex <u>11</u>.⁹ The following, tentative, mechanism explains the formation of the products, although other possibilities remain, e.g. direct attack of the allylamine on complex <u>11</u>. Complexes analogous to <u>12</u> have in fact been isolated¹⁰ and it has been suggested that they are formed via the complex <u>11</u>.

The octadienylamine <u>1</u> is formed by the addition of a proton instead of an allylic group to C-6 of the butadiene dimer. The source of this hydrogen, as well as the fate of the lost allylic residue, is unknown. In the reaction of the crotylamine <u>6</u>, β -elimination from complex <u>10</u> (R=CH₃) with formation of a palladium hydride may take place, followed by reductive elimination of dimethylamine. Reaction of dimethylamine with butadiene would give 1.

Palladium-catalyzed reactions of other allylic substrates with butadiene are presently under investigation.

ACKNOWLEDGEMENTS

This work has been supported by the Swedish Natural Science Council and by the Swedish Board for Technical Development. The ¹³C-NMR spectra were kindly recorded by Dr Ulla Jacobsson-Kempe.

REFERENCES AND NOTES

- Presented at "The tenth International Conference on Organometallic Chemistry", Toronto, Canada, August 1981
- B. Åkermark, G. Åkermark, C. Moberg, C. Björklund and K. Siirala-Hansén, J. Organometal. Chem., 164 97 (1979)
- 3. The compound shows satisfactory elemental analysis (C, H, N) as well as IR and mass spectra consistent with the suggested structure.
- 4. Bruker WP 200 spectrometer.
- 5. Prepared by addition of 1,3-pentadiene and diethylamine to bis(benzonitrile)palladium(II) chloride in acetone followed by addition of triphenylphosphine.
- 6. M. Green, G. Scholes and F.G.A. Stone, J.C.S. Dalton (1978) 309
- U.M. Dzhemilev, F.A. Selimov, A.Z. Yakupova and G.A. Tolstikov, Bull. Acad. Sci. USSR, Chem. Ser. 27 1230 (1978)
- K. Kaneda, H. Kurosaki, M. Terasawa, T. Imanaka and S. Teranishi, J. Org. Chem., <u>46</u> 2356 (1981)
- 9. J. Tsuji, "Organic Synthesis with Palladium Compounds", Springer-Verlag Berlin Heidelberg 1980.
- 10. D.A. White, J. Chem. Research (S) 226 and D.A. White, J. Chem. Research (M) (1977) 2401.

(Received in UK 17 September 1981)